Paper
EAGLE-3: Scaling up Inference Acceleration of Large Language Models via Training-Time Test
Published Mar 3, 2025 · Yuhui Li, Fangyun Wei, Chao Zhang
ArXiv
14
Citations
4
Influential Citations
Abstract
The sequential nature of modern LLMs makes them expensive and slow, and speculative sampling has proven to be an effective solution to this problem. Methods like EAGLE perform autoregression at the feature level, reusing top-layer features from the target model to achieve better results than vanilla speculative sampling. A growing trend in the LLM community is scaling up training data to improve model intelligence without increasing inference costs. However, we observe that scaling up data provides limited improvements for EAGLE. We identify that this limitation arises from EAGLE's feature prediction constraints. In this paper, we introduce EAGLE-3, which abandons feature prediction in favor of direct token prediction and replaces reliance on top-layer features with multi-layer feature fusion via a technique named training-time test. These improvements significantly enhance performance and enable the draft model to fully benefit from scaling up training data. Our experiments include both chat models and reasoning models, evaluated on five tasks. The results show that EAGLE-3 achieves a speedup ratio up to 6.5x, with about 1.4x improvement over EAGLE-2. In the SGLang framework, EAGLE-3 achieves a 1.38x throughput improvement at a batch size of 64. The code is available at https://github.com/SafeAILab/EAGLE.
EAGLE-3 significantly enhances performance in large language models by abandoning feature prediction and using multi-layer feature fusion, enabling better model intelligence without increasing inference costs.
Full text analysis coming soon...